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Rotating Equivalent Temperature and Solar Granulation

Chen Haibin, Wu Rong∗

Abstract

The rotation of the fluid cell generates additional pressure and exhibits properties similar to temperature in
isotrotropic expansion, affecting the convection criteria in the form of size, with small fluid cells in a natural
convection state and large fluid cells in a forced convection state. This is verified in observational data on
solar granulation, which also infer that the critical size of the granule is negatively correlated with the value
of the local average vortex.

keyword: rotating equivalent temperature, solar granulation, convection criterion, rotating turbulent ther-
mal convection

Introduction

A large number of observations show that, There is a critical diameter in the granule, which can be divided
into large and small granule according to the diameter. The number of large granules decreases rapidly with
the increase of diameter, while the number of small granules monotonously increases or remains flat with the
decrease of diameter. The average brightness, maximum brightness and fractal dimension of the two kinds of
granules is different. The critical diameter of granule obtained by different physical quantities is different, but
the range is close to 1′′.3 ∼ 1′′.5 [1–7].

In the study of rotating turbulent thermal convection and solar differential rotation [8], we found the effect
of the rotating on criterion convection, which makes small-diameter fluid cells in natural convection state and
large-diameter fluid cells in forced convection state. This theory can be further extended to solar granule.

1 Thermal Properties of Rotating Fluid Cells

1.1 Additional pressure provided by rotation in a rotating fluid cell

There is a pressure gradient along the radial direction in the fluid rotating uniformly without external force,
which can be expressed as

dp

dR
= ρΩ2R. (1)

The pressure distribution along the radial direction in the uniformly rotating fluid is

p = pO +
1

2
ρΩ2R2, (2)
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Where pO is the pressure of the rotation axis of the fluid. Suppose that a point A in the rotating fluid is R

away from the rotation axis, a point B in its neighborhood is l away from the point A, and the pressure of the
point A and point B can be expressed as

{

pA = pO + 1

2
ρΩ2R2;

pB = pO + 1

2
ρΩ2R2 + ρΩ2Rlcos 〈R, l〉 + 1

2
ρΩ2l2.

(3)

Then the pressure difference between the point A and the point B is

δp = ρΩ2Rlcos 〈R, l〉 +
1

2
ρΩ2R2, (4)

where, ρΩ2Rlcos 〈R, l〉 is the pressure difference caused by the radial pressure gradient, and 1

2
ρΩ2R2 is the

second-order pressure difference caused by the pressure gradient unique to the rotating fluid. The second term
is independent of the pressure gradient direction, but only related to the distance between two points. For
fluid cells with the concept of size, the average pressure on the surface is generally greater than the average
pressure inside. In some convection, it is necessary to consider the second-order pressure difference, which will
lead to new characteristics of the rotating fluid.

Take an independent cylinder fluid cell with radius of a, height of 2a, and rotational speed of Ω from the
rotating fluid as the research object. Since the fluid cell rotates, there is a pressure gradient along the radial
direction in the cylinder, which is

dp

dr
= ρΩ2r. (5)

The pressure distribution along the radial direction in the rotating cylinder obtained by integration is

p = po +
1

2
ρΩ2r2, (6)

where po is the pressure on the rotation axis of the cylinder. Same temperature T , different rotational speed
Ω, po is not the same; And po is also different with same rotational speed Ω and different temperature T , . po

includes both temperature and rotational speed terms, so it is necessary to decouple the pressure generated
by temperature and rotational speed . The average pressure on the cylinder surface can be expressed as

p̄S =

∫∫

S
pdS

∫∫

S
dS

= p̄T + p̄Ω, (7)

where, p̄T only includes temperature term, p̄Ω only includes the rotational speed term. Thus, the average
pressure on the cylinder surface is decoupled.

Let the initial rotational speed of the cylinder be zero. When the rotational speed changes, the pressure
distribution and density distribution of the internal fluid will also change. Assuming that the gas is adiabatic,
the relationship between pressure and density satisfies

ρ = ρ̄

(

p

p̄T

)
1

γ

, (8)

where γ is the specific heat ratio of gas, ρ̄ is the average density when the cylinder speed is zero, p̄T is the
average surface pressure when the cylinder speed is zero. The mass can be obtained by integrating the density.
Since the volume and mass of the gas remain unchanged before and after the speed change

∫ a

0

2πraρdr =

∫ a

0

2πraρ̄dr, (9)

Eq. (8) is substituted into Eq. (9), Tidied up

∫ a

0

(

p

p̄T

)
1

γ

rdr =

∫ a

0

rdr. (10)
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Within linear range,
(

p
p̄T

)
1

γ

≈ 1 + 1

γ
p−p̄T

p̄T
, Eq. (10) is simplified as

∫ a

0

1

γ

p − p̄T

p̄T

rdr = 0, (11)

Eq. (6) is substituted into Eq. (11), and the solution is

po = p̄T −
1

4
ρΩ2a2, (12)

It can be seen from the formula, p̄T is the pressure of the cylinder at the radius of
√

2

2
a. Within the linear range,

the temperature and pressure at this suface are independent of the rotational speed, and the temperature at
this suface T can be used as the characteristic temperature of the cylinder. It can be seen from the calculation
that the average pressure contributed by rotation to the cylinder bottom is zero, and the average pressure
contributed to the cylinder side is 1

4
ρΩ2a2 , then the average pressure provided by rotation to the cylinder

surface is

p̄Ω =
1

6
ρΩ2a2, (13)

In the derivation process, the adiabatic condition is introduced, but in fact, as long as the gas cell does not
transport heat with the outside world and the pressure change is still in the linear range, the above equation
is still valid.

For other shapes such as sphere, if the expansion is Isotropy, the work done by pressure is dW =
∫∫

pdSdl

, the total volume change is dV =
∫∫

dSdl . imitation of thermal, dW = pdV , so that p̄Ω = dWΩ

dV
, the

expression of the additional pressure provided by rotation is similar to that of a cylinder, which can be written
as

p̄Ω = kΩρΩ2a2. (14)

For Different shapes, The values of kΩ are different.

1.2 Rotating equivalent temperature

During isotropic expansion, the pressure generated by the rotation of the fluid cell does work and causes the
change of rotation energy. The relationship between the pressure and energy generated by the rotation is
similar to the relationship between the pressure and heat energy in ideal gas. Thermology is a very mature
discipline. Therefore, the rotation of the fluid cell can be compared with the thermal motion of molecules in
the research.

According to the equation of state of ideal gas, the pressure provided by the thermal motion of molecules
is p = KρT , where K = Rm

Mm

, Rm is the molar gas constant, Mm is the molar mass of the gas. The pressure
generated by rotation can also be expressed in this form, so that

p̄Ω = KρTΩ (15)

Then the equivalent temperature TΩ of rotation cylinder can be expressed as

TΩ =
1

6

Mm

Rm

Ω2a2 (16)

The rotational kinetic energy of a cylinder with a radius of a , a height of 2a , and a rotating speed of Ω can
be obtained by integration

EΩ =
1

2
ρΩ2a5 (17)
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It can also be expressed as

EΩ =
1

4
MΩ2a2 (18)

Where M is the total mass of the cylinder. Imitating the heat capacity, the change of rotational kinetic
energy dEΩ caused by the change of rotational equivalent temperature dTΩ of a rotating cylinder in the case
of isotropic expansion is

dEΩ =
M

Mm

(

3

2
RmdTΩ

)

(19)

So the equivalent kinetic energy capacity of the rotating cylinder CV Ω is

CV Ω =
3

2
Rm (20)

This is the same as the heat capacity of monatomic gas, indicating that they have similar properties. The
isotropic expansion of a rotating fluid cell is very similar to the adiabatic expansion of an ideal gas, which can
be regarded as an ideal gas expansion process with a degree of freedom of 3 and a specific heat ratio of 5

3
.

Vorticity is a more convenient physical quantity than rotational speed in calculation. The relationship
between the main vorticity of fluid cells ω and the rotating speed ω satisfies

ω = 2Ω (21)

Rotating equivalent temperature TΩ can also be converted into vorticity equivalent temperature TΩ , i.e

Tω = TΩ =
1

24

Mm

Rm

ω2a2 (22)

1.3 Transient equilibrium of fluid cell pressure

When the rotating equivalent temperature of the fluid cell is different from that of the environmental fluid,
the rotational speed of the fluid cell is different from that of the environmental fluid, which will lead to the
imbalance between the fluid cell and the environmental fluid, resulting in inertial waves, which will make the
rotational speed of the fluid cell and the environmental fluid in the oscillate finally tend to be consistent. The
characteristic time of the evolution of the inertial waves is the rotational period of the environmental fluid T0

. When the evolution characteristic time of expansion process t is far less than T0 , the influence of inertial
wave can be ignored when studying this process, and the local pressure can be unbalanced.

In the convection process, for small-scale spherical fluid cells, the acoustic wave propagation in the expansion
process is much faster than the inertial wave. The balance of the total pressure on the surface is much faster
than the balance of rotating speed. Therefore, the transient balance of fluid cell is marked by the balance of
total pressure on surface .The evolution time t to reach the balance is significantly greater than a

vc
, where a

is the characteristic size of the fluid cell, vc is the sound speed, at this time, the pressure balance meets
∫∫

S

pdS =

∫∫

S

p∗dS (23)

Where, S is the boundary area of the fluid cell, p is the pressure of the fluid cell inside the boundary, and
p∗ is the pressure of the environmental fluid outside the boundary. To simplify the calculation, we assume
that the above relationship is also satisfied in the cylindrical fluid cell, that is, the average surface pressure of

the cylindrical fluid cell p̄S =

∫∫

S
pdS

∫∫

S
dS

and the average surface pressure of the environment p̄∗
S =

∫∫

S
p∗

dS
∫∫

S
dS

is

satisfied when the fluid cell is in transient balance

p̄S = p̄∗
S (24)
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2 Convection Criterion and granule

2.1 Criterion of Rotating Turbulent Thermal Convection

In the non rotating fluid model, when the temperature gradient is higher than Adiabatic gradient, thermal
convection will occur, which is the convection criterion. When the average expansion process of the fluid is
nearly isotropic, the gradient of the rotating equivalent temperature has the same effect as the temperature
gradient, and will also affect the convection criterion.

Since the balance speed of pressure of the fluid is fast, the speed of heat conduction is slow, the expansion
process of the disturbed fluid cell is approximate to adiabatic expansion, and the relationship between pressure
and density meets p = K1ργ , where K1 is a constant, and γ is the specific heat ratio of the gas. Combined
ideal gas equation of state p = K2ρT , where K2 is a constant, so the temperature gradient determined is

dT

dl
=

(

1 −
1

γ

)

T

p

dp

dl
(25)

Where l is in the direction of gravity (centrifugal force), since this temperature gradient is derived under adia-
batic conditions, it is also known as the adiabatic temperature gradient

(

dT
dl

)

ad
. When the actual temperature

gradient
(

dT
dl

)

rd
satisfies the Schwarz convection criterion

∣

∣

∣

∣

dT

dl

∣

∣

∣

∣

rd

>

∣

∣

∣

∣

dT

dl

∣

∣

∣

∣

ad

(26)

The force acting on the disturbed air cell will keep it moving away from its initial position, convection will
occur.

There are two temperatures in the rotating turbulent thermal convection. The isotropic expansion of the
rotating equivalent temperature can be regarded as a thermal process, with a specific heat ratio of 5

3
. The gas

in the solar convection zone exists as atoms or ions and can be regarded as a monoatomic gas with a specific
heat ratio of 5

3
. The equivalent adiabatic temperature gradient can be expressed as

(

dT + dTΩ

dl

)

ad

=
2

5

T

p̄T

dp̄T

dl
+

2

5

TΩ

p̄Ω

dp̄Ω

dl
(27)

or
(

dT + dTΩ

dl

)

ad

=
2

3
(T + TΩ)

dρ

ρdl
(28)

Obviously, The adiabatic gradient can be expressed more simply as a density gradient. The new convection
criterion is

∣

∣

∣

∣

dT + dTΩ

dl

∣

∣

∣

∣

rd

>

∣

∣

∣

∣

dT + dTΩ

dl

∣

∣

∣

∣

ad

(29)

2.2 Scale form of convection criterion

According to Eq. (16)
dTΩ

dl
= 2TΩ

(

dΩ

Ωdl
+

da

adl

)

(30)

The mass is conservative during the expansion of the fluid cell. There are

da

adl
= −

1

3

dρ

ρdl
(31)
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Substitutioning Eq. (30) and Eq. (31) into Eq. (28) ,we have

dT

dl
+ 2TΩ

dΩ

Ωdl
=

2

3
T

dρ

ρdl
+

4

3
TΩ

dρ

ρdl
(32)

Tidied up

2TΩ

(

dΩ

Ωdl
−

2

3

dρ

ρdl

)

=
2

3
T

dρ

ρdl
−

dT

dl
(33)

Substituting the Eq. (16) into the Eq. (33) ,we have

a2 =
T

(

2

3

dρ
ρdl

− dT
T dl

)

1

3

Mm

Rm
Ω2

(

dΩ

Ωdl
− 2

3

dρ
ρdl

) (34)

It can be seen that the convection criterion is related to the size of the fluid cell. Given the temperature
T , relative temperature gradient dT

T dl
, relative density gradient dρ

ρdl
, rotational speed Ω and relative speed

gradient dΩ

Ωdl
of the ambient fluid, the size of the fluid cell of the convection criterion can be expressed as

aad . Then the condition of the fluid cell size for spontaneous thermal convection can be judged by the new
convection criterion

∣

∣

dT +dTΩ

dl

∣

∣

rd
>

∣

∣

dT +dTΩ

dl

∣

∣

ad
. Generally, dΩ

Ωdl
and dT

T dl
are identical symbol with the dρ

ρdl
.

The discussion is as follows:

(1)When
∣

∣

dT
T dl

∣

∣ <
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
and

∣

∣

dΩ

Ωdl

∣

∣ <
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
, Natural convection cannot occur;

(2)when
∣

∣

dT
T dl

∣

∣ >
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
and

∣

∣

dΩ

Ωdl

∣

∣ <
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
, The size form of the convection criterion is a < aad ;

(3)when
∣

∣

dT
T dl

∣

∣ <
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
and

∣

∣

dΩ

Ωdl

∣

∣ <
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
, The size form of the convection criterion is a > aad;

(4)when
∣

∣

dT
T dl

∣

∣ >
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
and

∣

∣

dΩ

Ωdl

∣

∣ <
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
, Convection is driven by both rotating gradient and temperature

gradient at the same time. The size of the fluid cells is unrestricted.

2.3 Size Limitation of Granule

In the solar convection zone, the granule exists in the range of 5 to 16 minutes, which is much smaller than
the solar rotation period. So the fluid cell expansion is close to isotropy in Statistics . The thermal properties
of rotation can be fully represented.

Convection in the solar convection zone is driven by the temperature gradient, so there is
∣

∣

dT
T dl

∣

∣ >
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣

. Under the vorticity transport of rotating turbulent thermal convection, the relative totation gradient dΩ

Ωdl

Tend to 2

3

dρ
ρdl

, while the relative rotation gradient dΩ

Ωdl
affected by viscosity Tend to zero. Therefore, the final

relative rotation gradient is between both,
∣

∣

dT
T dl

∣

∣ >
∣

∣

∣

2

3

dρ
ρdl

∣

∣

∣
, which satisfies the second case of the discussion.

The convection criterion has the form of size a < aad .

When a < aad , thermal convection occurs spontaneously; When a > aad , the fluid cell will have an
equilibrium position, the disturbed fluid cell will oscillate near the equilibrium position and decelerate due
to dissipation of viscous. natural convection can stimulate forced convection in rotating turbulent thermal
convection, so the critical size aad is not the upper limit of the size of the fluid cell. But while a > aad

,the number of fluids cell decreases sharply with the increase of a . This is reflected in the size distribution
characteristics of granule.A large number of observations have shown that there is a critical diameter with the
granule, which can be divided into mini granule and lage granule according to the diameter. The number of
granule decreases rapidly with the increase of diameter. The number of mini grains increases monotonously or
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remains flat with the decrease of diameter. There are differences on average brightness, maximum brightness
and fractal dimension between the two types of granule. The observed data are consistent with the theory in
this paper

In the solar convection zone, the distributions of temperature T and relative temperature gradient dT
T dl

,

density ρ and relative density gradient dρ
ρdl

vary little with latitude, but the rotational speed Ω and relative

rotation gradient dΩ

Ωdl
have significant differences with latitude. For ease of calculation, the rotational speed Ω

of the fluid cell can be replaced by vorticity ω , the critical size of the fluid cell is

aad =

√

√

√

√

√

T
(

2

3

dρ
ρdl

− dT
T dl

)

1

12

Mm

Rm
ω2

(

dω
ωdl

− 2

3

dρ
ρdl

) (35)

The solar has significant differential rotation, so the influence of rotational speed Ω with latitude cannot be
neglecte. while the observation data of relative vorticity gradient dω

ωdl
is less. If the influence of dω

ωdl
with

latitude is neglected, the distribution of critical size with latitude can be expressed as

aad (ϕ) ≈
aad0ω0

ω (ϕ)
(36)

The solar rotates faster near the equator and slower near the pole, ω (ϕ) decreases with increasing latitude, so
aad may increase with latitude.

3 Conclusion

The rotation of a fluid cell generates additional pressure and exhibits temperature-like properties in isotropic
expansion. It can be expressed by the equivalent temperature of rotation or vorticity. The rotational equivalent
temperature can influence the convection criteria. When the values of vorticity gradient and temperature
gradient are within certain ranges, the size of the fluid cell can determine whether it is in a state of natural
convection. Under the temperature gradient and vorticity gradient in the solar, Small fluid cells are in a state
of natural convection while large fluid cells are in a forced convection state. With the critical size as the
boundary, the number, brightness and fractal latitude of fluid cell have different distribution characteristics.
This is validated in the observed data of granulation, which also infers that the critical size is negatively
correlated with the local average vorticity.

References

[1] T. Roudier and R. Muller, “Structure of the solar granulation,” Solar Physics, vol. 107, no. 1, pp. 11–26,
1986.

[2] R. Bray and R. Loughhead, “A new determination of the granule/intergranule contrast,” Solar Physics,
vol. 54, no. 2, pp. 319–326, 1977.

[3] F. Berrilli, G. Consolini, E. Pietropaolo, B. Caccin, V. Penza, and F. Lepreti, “2-d multiline spectroscopy
of the solar photosphere,” Astronomy & Astrophysics, vol. 381, no. 1, pp. 253–264, 2002.

[4] J. Hirzberger, J. Bonet, M. Vázquez, and A. Hanslmeier, “Time series of solar granulation images. ii.
evolution of individual granules,” The Astrophysical Journal, vol. 515, no. 1, p. 441, 1999.

[5] J. Hirzberger, M. Vázquez, J. Bonet, A. Hanslmeier, and M. Sobotka, “Time series of solar granulation
images. i. differences between small and large granules in quiet regions,” The Astrophysical Journal, vol.
480, no. 1, p. 406, 1997.

7



[6] D. Yu, Z. Xie, Q. Hu, S. Yang, J. Zhang, and J. Wang, “Physical properties of large and small granules in
solar quiet regions,” The Astrophysical Journal, vol. 743, no. 1, p. 58, 2011.

[7] D. Yu, Z. Xie, Q. Hu, S. Yang, and C. Jin, “Properties of granules in upflows and downflows,” Solar

Physics, vol. 273, no. 1, pp. 1–13, 2011.

[8] H. Chen and R. Wu, “Rotating turbulent thermal convection and solar differential rotation,” arXiv preprint

arXiv:2207.11990, 2022.

8


	1 Thermal Properties of Rotating Fluid Cells
	1.1 Additional pressure provided by rotation in a rotating fluid cell
	1.2 Rotating equivalent temperature
	1.3 Transient equilibrium of fluid cell pressure

	2 Convection Criterion and granule
	2.1 Criterion of Rotating Turbulent Thermal Convection
	2.2 Scale form of convection criterion
	2.3 Size Limitation of Granule

	3 Conclusion

